2022 Drinking Water Quality Report

SUMMARIZING 2021 WATER QUALITY TEST RESULTS
Table of Contents

CONTACT INFORMATION 3
CEO’S MESSAGE 4
YOUR DRINKING WATER SOURCE 5
WATER TREATMENT 6
FROM TREATMENT TO TAP 7
PROTECTING THE POTOMAC 9
ENSURING THE BEST 11
LEAD IN DRINKING WATER 12
IMPORTANT HEALTH INFORMATION 18
DRINKING WATER ANALYSIS DATA 19

The 2022 Water Quality Report is available for download at dcwater.com/waterreport. Reports from previous years can be viewed at dcwater.com/testresults. Please call 202-787-2200 or send an email to communications@dcwater.com to request a printed copy.

Get Involved

The DC Water Board of Directors conducts regularly scheduled board meetings that are open to the public, generally on the first Thursday of each month, except August, at 9:30 a.m. The meetings are held virtually or at the DC Water Headquarters, 1385 Canal St, SE, Washington DC 20003.

Please visit dcwater.com or contact the Office of the Board Secretary at 202-787-2330 to confirm a meeting time and location.
Contact Information

DC WATER CONTACT INFORMATION
- Drinking Water Division: 202-612-3440
- Customer Service: 202-354-3600
- 24-Hour Command Center: 202-612-3400
- Office of Marketing and Communications: 202-787-2200
- dcwater.com

ADDITIONAL CONTACTS

US Army Corps of Engineers Washington Aqueduct
- nab.usace.army.mil/Missions/Washington-Aqueduct/: 202-764-2753

Department of Energy and Environment
- doee.dc.gov: 202-535-2600

Interstate Commission on the Potomac River Basin
- potomacrriver.org: 301-984-1908

EPA Region 3 Customer Service Representative
- 215-814-5122

IF YOU HAVE A QUESTION ABOUT THIS REPORT AND REQUIRE ASSISTANCE FROM A TRANSLATOR, PLEASE CONTACT CUSTOMER SERVICE AT 202-354-3600 (8 A.M. TO 5 P.M., MONDAY THROUGH FRIDAY).

Este reporte contiene información importante sobre su agua potable. Para obtener una traducción del reporte, por favor comuníquese con la Oficina de Asuntos Externos a través del 202-354-3600 o custserv@dcwater.com

Báo cáo này có chứa thông tin quan trọng về nước uống của bạn. Vui lòng liên hệ Phòng Đối Ngoại theo số 202-354-3600 hoặc địa chỉ custserv@dcwater.com nếu bạn muốn có bản dịch báo cáo.

Ce rapport contient des renseignements importants à propos de votre eau potable. Si vous souhaitez vous procurer un rapport traduit, veuillez communiquer avec le Bureau des affaires extérieures en composant le 202-354-3600, ou connectez-vous à custserv@dcwater.com

该报告包含有关您的饮用水的重要信息。如需翻译版的报告，请联系外事办公室，电话：202-354-3600 电子邮件：custserv@dcwater.com.
CEO’s Message

Dear Customers,

I know that you and your family depend on the water that comes out of your faucets for drinking, cooking, washing and other daily activities. And you depend on DC Water to ensure that water is clean and safe, a responsibility we take extremely seriously.

Each year we perform thousands of quality tests to ensure the drinking water we provide meets or exceeds the standards set forth by the federal Safe Drinking Water Act. The results from the most recent tests are summarized here in this year’s Drinking Water Quality Report. I am pleased to share that the report confirms the outstanding quality of the District of Columbia’s tap water.

One of the things we constantly monitor for is lead in water. DC Water meets all EPA standards for lead in water, but I want to go a step further. That’s why I launched the Lead Free DC program to remove all lead service lines in the District by 2030. Working together to remove the sources of lead will ensure everyone has equitable access to clean, safe drinking water, regardless of where they live.

It is our privilege to provide you with water service. I hope you will take this opportunity to learn more about the quality of that water in this report.

Should you have any questions, concerns, or suggestions, I encourage you to call, email, or reach out to us via social media. Thank you and be safe.

Sincerely,

David L. Gadis
Chief Executive Officer

“One of the things we constantly monitor for is lead in water. DC Water meets all EPA standards for lead in water, but I want to go a step further. That’s why I launched the Lead Free DC program to remove all lead service lines in the District by 2030.”

– DAVID L. GADIS, CHIEF EXECUTIVE OFFICER
Where does our drinking water come from?
The District of Columbia’s drinking water comes from the Potomac River. The Washington Aqueduct (Aqueduct) withdraws about 140 million gallons of water each day from intakes at Great Falls and Little Falls.

Who treats our drinking water?
DC Water purchases treated drinking water from the Aqueduct which is owned and operated by the U.S. Army Corps of Engineers. The Aqueduct filters, cleans, and fortifies water at the Dalecarlia and McMillan treatment plants to meet all water quality standards set by the U.S. Environmental Protection Agency (EPA).

During the treatment process, drinking water is enhanced with beneficial compounds like fluoride that improve public health.
How is our water treated?

What is drinking water treatment?
Like most public water systems around the country, the Aqueduct uses a multi-step treatment process to turn “raw” water from the Potomac River into clean, safe drinking water. The treatment process includes sedimentation, filtration, fluoridation, pH adjustment, disinfection using free chlorine and chloramine (a combination of chlorine and ammonia), and corrosion control using orthophosphate.

How is chlorine used to clean water?
Chlorine is commonly used by water utilities to kill viruses and bacteria that can be found in rivers and other sources of drinking water. The Aqueduct first adds chlorine and then adds ammonia to create chloramine, a more persistent disinfectant that keeps water clean as it travels through DC Water’s pipe system.

DC Water continuously monitors the drinking water to ensure that safe disinfectant levels are maintained in the distribution system. Even at safe levels, it is necessary for chloramine to be removed from water used for kidney dialysis and aquariums. Contact your kidney dialysis center, physician or local pet store about water treatment for removing chloramine. For more information about chloramine, visit dcwater.com/water-faqs.

Why does water have a strong chlorine smell in the spring?
Most of the year, the Aqueduct produces drinking water with chloramine as the residual disinfectant that keeps it clean. For a short time each spring, the Aqueduct temporarily switches from using chloramine to only chlorine. This change is standard practice for utilities that use chloramine—it helps keep pipes clean, and optimizes water quality throughout the year. The level of chlorine is safe for consumption, but you can reduce the chlorine smell and taste by placing an open pitcher of water in the fridge. If you haven’t used water in several hours, let the cold water run for 2 minutes before filling the pitcher.
How do we get our drinking water?
DC Water distributes about 95 million gallons of clean drinking water every day to more than 700,000 District residents, and our commercial and governmental customers in the District of Columbia, and parts of Maryland and Virginia.

Drinking water travels through a complex system of about 1,350 miles of water mains throughout the city.

DC Water tests and monitors drinking water quality around the clock as it flows through our system, ensuring tap water continues to meet all safe water standards.

How does DC Water monitor water quality?
DC Water’s monitoring program—far more extensive than required by law—demonstrates that the quality of the District’s drinking water remains high and meets all federal drinking water standards.

Our dedicated team performed more than 25,000 tests from 7,500 water samples taken at points throughout the city. These tests confirmed that our city’s tap water meets or exceeds all regulations set by the Safe Drinking Water Act.

What are the drinking water regulations?
The Safe Drinking Water Act defines the term...
“contaminant” as meaning any physical, chemical, biological, or radiological substance or matter in water. Therefore, the law defines “contaminant” very broadly as being anything other than water molecules. Even beneficial compounds like fluoride, essential nutrients, and naturally-occurring minerals are considered “contaminants.”

In order to ensure that tap water is safe to drink, the EPA has regulations that limit the amount of certain contaminants in water provided by water suppliers. The Food and Drug Administration establishes limits for contaminants in bottled water which must provide similar protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s (EPA) Safe Drinking Water Hotline (800-426-4791).

For additional information about drinking water regulations, visit epa.gov/dwstandardsregulations.

The Washington Aqueduct, DC Water and Residents Work Together to Ensure Water Quality

1. Drinking water is drawn from the Potomac River by the Washington Aqueduct.

2. The Washington Aqueduct treats source (or raw) water to provide clean drinking water.

3. DC Water operates a large distribution system and monitors the water quality.

4. Customers maintain plumbing in the home to protect water quality.
How does DC Water safeguard our drinking water source?
High quality tap water starts with a healthy river. Our drinking water comes from a single “surface water” supply, as opposed to an aquifer or groundwater supply. The abundant Potomac River is also a source of water for many other water utilities including the Washington Suburban Sanitation Commission (WSSC), Fairfax Water, and Arlington County. DC Water works with these utilities, environmental groups, government agencies, and other organizations to ensure the Potomac River remains clean and healthy.

DC Water takes an active role in the Potomac River Basin Drinking Water Source Protection Partnership—a cooperative group of 27+ utilities, government agencies and regional stakeholders.

The Partnership strategically addresses the multi-faceted issues that affect the region’s drinking water supply. Our work includes minimizing the impact of agriculture on water quality, coordinating response efforts during emergency situations, contributing to the latest environmental assessments, and educating residents about the importance of protecting upstream drinking water sources.

Today, the District of Columbia is part of a watershed that is cleaner and healthier than ever before. EPA Region III, as the drinking water primacy agency for the District of Columbia, funded the update and completion of the Source Water Assessment of the Potomac River watershed in early 2020. Horsley Witten was contracted to consult with public water utilities and state agencies to create this update. This “report” is in the form of an innovative web-based storyboard containing interactive links and a visual representation of the updated information. The intention was to provide the resource managers, scientists, and interested citizens with a more interactive, user friendly way of assessing the data through a GIS platform to better understand source water protection. The storyboard can be found here: dcwater.com/EPA-Potomac-Source-Water-Assessment-2020
How can sources of drinking water become polluted?
Across the nation, rivers, lakes, streams, ponds, reservoirs, springs and wells are sources of drinking water (both tap water and bottled water). Rain and melting snow travels over the surface of the land or through the ground, dissolving naturally occurring minerals and picking up substances resulting from animal and human activity and carrying these pollutants to our drinking water sources. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria that may come from agricultural livestock operations, septic systems, wastewater treatment plants and wildlife.
- Inorganic contaminants, such as salts and metals that can be naturally occurring or result from urban stormwater runoff, farming, and industrial or domestic wastewater discharges.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production, and also may come from gas stations, urban stormwater runoff, and septic systems.
- Radioactive contaminants that can be naturally-occurring or the result of mining activities.

What can I do to help?
Take pride in the Potomac! The best way to be a steward of the river is to take care of our watershed—the area of land that drains to the river.

- Prevent litter and pick up pet waste.
- Use only enough pesticides, landscaping chemicals, and fertilizer as necessary. Excess garden and lawn-care materials wash into and pollute waterways during rainfall.
- Consider using Bloom—a safe, Class-A soil conditioner for your garden (bloomsoil.com).
- Dispose of household waste, grease and motor oil properly, not down sinks or storm drains.
- Prevent trash and debris from entering storm drains and catch basins. To report a clogged drain or basin, call 202-612-3400.
- Report spills that could potentially enter the waterways by calling 311.
- Get rid of unwanted or expired medication at a drug-take back location or throw it in the trash. Flushing pharmaceuticals down the toilet can harm our rivers. Learn more at protectyourpipes.org.
Keeping Tap Water Fresh at Home
A few simple tips can help ensure clean, fresh water every time you turn on the tap. Get more bilingual tips at dcwater.com/water-quality-home.

Household Water Quality Tips

1. **Flush taps for two minutes** before using water for drinking and cooking when household water has not been used for several hours.

 When water sits in your pipes for long periods of time, water quality can degrade.

2. **Use only cold water** for drinking and cooking.

 Build-up of metals, sediment and bacteria in your hot water heater can enter your tap water when it runs through the water heater.

3. **Clean faucet aerators** every three months

 Sediment and metals can collect in the aerator screen located at the tip of your faucets. Replace aerators that are in poor condition. (available at local hardware stores).

4. **Replace filter cartridges** according to manufacturer’s instructions.
Lead can cause serious health problems if too much enters your body from drinking water or other sources. It can cause damage to the brain and kidneys and can interfere with the production of red blood cells. The greatest risk of lead exposure is to infants, young children, and pregnant women. Scientists have linked the effects of lead on the brain with lowered IQ in children. Adults with kidney problems and high blood pressure can be affected by low levels of lead more than healthy adults.

How does DC Water address lead?
DC Water works with the Aqueduct to control corrosion of pipes and plumbing throughout the District, which minimizes the release of lead into water. DC Water meets all EPA standards for lead in water, and continues to monitor for lead at the tap, replace lead service pipes, and help customers identify and remove lead sources on their property. DC Water is fully committed to achieving a Lead Free DC. Learn more about lead pipe replacement programs on page 15.

How does lead get into water?
Lead pipe in the individual service lines to the house and lead solder used to join copper pipes prior to 1987 are the significant contributors to lead in the drinking water. Galvanized iron pipe downstream of lead pipe attracted lead over time and is also a source of lead. Water comes in contact with these lead sources as it travels through your service line and indoor plumbing. As the water sits in the pipe when not in use, the lead can release into the water. Lead particles inside plumbing can also release sporadically into the water and can accumulate on faucet aerator screens.
How can I get rid of lead?
Identify and remove all sources of lead to eliminate the risk of lead in water.

1. Order a free lead test kit by contacting the Drinking Water Division at 202-612-3440 or email leadtest@dcwater.com. Lead test kits are provided to both single and multifamily residences as well as commercial customers. These tests can indicate the presence of lead in the service line or household plumbing. (dcwater.com/leadtest)

2. Check the interactive map to identify the material of your service line. This information is based on available historic records and may not be up to date. (dcwater.com/servicemap)

3. Identify your pipe material by checking your household water service connection inside the home, typically located in the basement. A helpful guide and videos are posted at dcwater.com/lead. You can also contact a licensed plumber to inspect your pipes.

4. Replace your lead pipes and plumbing. DC Water has several programs for lead service line replacement, and DC Water will always cover cost of replacement in public space. (dcwater.com/replacelead). Learn more on page 15.

5. Learn more about our lead program and download or request hard copies of lead information in both English and Spanish. (dcwater.com/lead and dcwater.com/lead-brochures)

Service Line Map

Use our map to check for lead service lines on your property.

Lead service lines were predominately installed prior to the mid-1950s in the District of Columbia, but there are records of lead service lines being installed as late as 1977. You can use our service line map to see the information DC Water has about your service line at dcwater.com/servicemap.
How can I reduce my risk of lead exposure?
If you have lead pipes, fixtures, or are unsure about the pipe material type, take steps to minimize possible exposure until all sources of lead are removed.

1. Flush your pipes before using any tap water for drinking or cooking. Run cold water until the temperature changes and then allow it to run for an additional two minutes.

2. Use only cold water for drinking and cooking including water used for infant formula, beverages, and ice.

3. Filter your water if there are known or suspected lead sources. Ensure the filter is antimicrobial and certified for lead removal.

4. Remove and clean faucet aerators every 3 months.

5. Request a free lead test kit to identify potential sources of lead (202-612-3440 or leadtest@dcwater.com).

6. Request free information at dcwater.com/lead-brochures, and visit dcwater.com/lead for more information.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. DC Water is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800-426-4791) or at epa.gov/safewater/lead.
How can DC Water help replace lead service pipes?
In Washington DC, homes constructed before the 1950’s were typically built with a lead service line—the pipe that connects the city water supply to your household plumbing. DC Water operates several programs for lead service line replacement. DC Water always pays for lead pipe replacement in public space, and District funds are now available to help customers pay for replacement on private property.

Private-side Partial Replacements
For residents with lead pipe on private property, and non-lead pipe in public space, the Lead Pipe Replacement Assistance Program (LPRAP) uses District funds to provide a free or discounted replacement. All homeowners are eligible for a 50% discount, up to $2,500. Some residents will qualify for 100% coverage depending on household size and income. Property owners can visit dcwater.com/LPRAP to learn how to get a cost proposal for work from a qualified plumber, and then apply with the Department of Energy and Environment (DOEE).

If only the portion on private property is lead, the District will pay for 50% or 100% of private-side costs.
Voluntary Full Replacements
If both the public and private portions of service line are lead, and no capital improvement projects are planned for the neighborhood, customers can enroll in the Voluntary Replacement Program.

DC Water will pay for all work in public space, and coordinate work so both portions are replaced at the same time. The property owner pays for work on private property. For more information visit dcwater.com/voluntary-replacement or email lead@dcwater.com.

Voluntary Full Replacements

If both portions are lead, and NO work is planned by DC Water, the homeowner pays for private-side costs.
Construction Project Full Replacements

Each year, DC Water replaces lead service pipes in conjunction with other construction projects. These projects include water main replacements, emergency repairs and District Department of Transportation (DDOT) projects. **DC Water will contact you if there are any planned projects in your neighborhood.** During these projects, replacement on private property is FREE for all residents—regardless of income. We strongly encourage property owners to take advantage of this opportunity so that we can replace the entire lead pipe at one time.

If DC Water is replacing or repairing the public side, then the lead pipe on the private side will be paid 100% by the District.
Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

EPA and Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Water Quality Analysis Data

Giardia – The Aqueduct monitored for Giardia in the source water (Potomac River) by collecting at the Great Falls intake every month in 2021. Giardia cysts were detected in ten samples collected with concentrations ranging from 0.095 to 1.02 cysts per liter.

Cryptosporidium – The Aqueduct monitored for Cryptosporidium in the source water (Potomac River) by collecting samples from the Great Falls intake every month in 2021. Cryptosporidium oocysts were not detected in any samples.

Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly-used filtration methods cannot guarantee 100 percent removal. Our monitoring indicates the presence of these microorganisms in the Potomac River. Current test methods do not allow us to determine if the microorganisms are dead or if they are capable of causing disease. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immuno-compromised people, infants and small children, and the elderly are at greater risk of developing life threatening illness. We encourage immuno-compromised individuals to consult their doctor regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water.
The following tables represent levels of regulated and unregulated water quality parameters. The test results for these parameters were detected above EPA's analytical method reporting limit from samples collected in the source or finished water for the District of Columbia.

The water quality test results indicate that your drinking water complied with all of the EPA's drinking water standards in 2021.

For testing results from previous years, visit dcwater.com/testresults.
Abbreviations & Definitions

AL (Action Level) - The concentration of a contaminant which, if exceeded, triggers a treatment or other requirement that a water system must follow. Other requirements may include additional testing, public notification or capital improvements. The AL is not equivalent to a maximum contaminant level or MCL (see definition below).

HAA - Haloacetic Acids.

HAA5 (Haloacetic Acids (5)) - The five haloacetic acid species regulated by EPA.

MRDL (Maximum Residual Disinfectant Level) - The highest level of a disinfectant that is allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MDRLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MCLG (Maximum Contaminant Level Goal) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MCL (Maximum Contaminant Level) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

NA - Not applicable.

ND - Non-Detectable.

NTU - Turbidity is measured with an instrument called a nephelometer, which measures the intensity of light scattered by suspended matter in the water. Measurements are given in nephelometric turbidity units (NTUs).

pCi/L (picocuries per liter) - A measure of radioactivity.

PO₄ - Phosphate.

ppm - Parts per million.

ppb - Parts per billion.

TT (Treatment Technique) - A required process intended to reduce the level of a contaminant in drinking water.

TTHM - Total Trihalomethanes

TOC - Total Organic Carbon

Turbidity - A measure of the cloudiness of water. We measure turbidity because it is a good indicator of the effectiveness of the water treatment system. Turbidity in excess of 5 NTU is just noticeable to the average person.
Regulated Contaminants

Washington Aqueduct Water Treatment Plant Performance

<table>
<thead>
<tr>
<th>Source of Contaminants</th>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MCLG</td>
<td>MCL or TT</td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU</td>
<td>NA</td>
<td>TT = 1 (maximum)</td>
<td>(maximum hourly) 0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NA</td>
<td>TT = 95% (minimum)</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Turbidity is often caused by soil runoff</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>removal ratio</td>
<td>NA</td>
<td>TT > 1 (annual average)</td>
<td>1.16 (lowest annual average). Annual average must be greater than 1.00 to be in compliance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

Water Entering DC Water’s Distribution System

<table>
<thead>
<tr>
<th>Source of Contaminants</th>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MCLG</td>
<td>MCL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Highest</td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Inorganic Metals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic</td>
<td>ppb</td>
<td>0</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ND</td>
<td>0.4</td>
<td>Erosion of natural deposits; Runoff from orchards</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>2</td>
<td>2</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.03</td>
<td>0.04</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Inorganic Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>ppm</td>
<td>4.0</td>
<td>4.0</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>0.8</td>
<td>Water additive which promotes strong teeth</td>
</tr>
<tr>
<td>Nitrates as Nitrogen</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>2</td>
<td>Runoff from fertilizer use; Erosion of natural deposits</td>
</tr>
</tbody>
</table>
Regulated Contaminants

WATER ENTERING DC WATER'S DISTRIBUTION SYSTEM

<table>
<thead>
<tr>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCLG</td>
<td>MCL</td>
<td>Highest</td>
</tr>
<tr>
<td>Synthetic Organics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>ppb</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Dalapon</td>
<td>ppb</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Di(2-Ethylhexyl) phthalate</td>
<td>ppb</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Simazine</td>
<td>ppb</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2,4-D</td>
<td>ppb</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Volatile Organic Contaminants

None detected other than TTHMs as shown below

Radionuclides

1. **Beta/photon emitters**
 - pCi/L
 - 0
 - 50
 - 4
 - ND to 4
 - Erosion of natural deposits

2. **Combined Radium-226/228**
 - pCi/L
 - 0
 - 5
 - 4
 - ND to 4
 - Erosion of natural deposits

3. **Gross Alpha Particles**
 - pCi/L
 - 0
 - 15
 - 6.9
 - ND to 6.9
 - Erosion of natural deposits

DC WATER'S DISTRIBUTION SYSTEM

<table>
<thead>
<tr>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCLG</td>
<td>MCL</td>
<td>Highest</td>
</tr>
<tr>
<td>Disinfectants and Disinfection Byproducts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine</td>
<td>ppm</td>
<td>4 (MRDL) (annual average)</td>
<td>4 (MRDL) (annual average)</td>
</tr>
</tbody>
</table>

1. Triennial radionuclide monitoring was performed in 2020.
DC WATER’S DISTRIBUTION SYSTEM

<table>
<thead>
<tr>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCLG</td>
<td>MCL</td>
<td>Highest</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disinfectants and Disinfection Byproducts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes</td>
<td>ppb</td>
<td>NA</td>
<td>80 (4-quarter locational running average)</td>
</tr>
<tr>
<td>Haloacetic Acids (5)</td>
<td>ppb</td>
<td>NA</td>
<td>60 (4-quarter locational running average)</td>
</tr>
</tbody>
</table>

LEAD AND COPPER (AT THE CUSTOMER’S TAP)

<table>
<thead>
<tr>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCLG</td>
<td>MCL</td>
<td>Highest</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January-June Monitoring Period</td>
<td>ppb</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>July-December Monitoring Period</td>
<td>ppb</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>

Copper

<table>
<thead>
<tr>
<th>Units</th>
<th>EPA Limits</th>
<th>DC Drinking Water</th>
<th>Description / Typical Sources of Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCLG</td>
<td>MCL</td>
<td>Highest</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>January-June Monitoring Period</td>
<td>ppm</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>July-December Monitoring Period</td>
<td>ppm</td>
<td>1.3</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Detected Contaminants

DETECTED CONTAMINANTS WITHOUT PRIMARY MCLS OR TREATMENT TECHNIQUES ENTERING DC WATER’S DISTRIBUTION SYSTEM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>ppb</td>
<td>37</td>
<td>10 to 124</td>
</tr>
<tr>
<td>Calcium</td>
<td>ppm</td>
<td>38</td>
<td>23 to 50</td>
</tr>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>40</td>
<td>20 to 132</td>
</tr>
<tr>
<td>Copper at Point of Entry²</td>
<td>ppb</td>
<td>4</td>
<td>1 to 13</td>
</tr>
<tr>
<td>Iron</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 21</td>
</tr>
<tr>
<td>Lithium</td>
<td>ppb</td>
<td>2</td>
<td>1 to 3</td>
</tr>
<tr>
<td>Magnesium</td>
<td>ppm</td>
<td>8</td>
<td>5 to 13</td>
</tr>
<tr>
<td>Manganese</td>
<td>ppb</td>
<td>1</td>
<td>ND to 1</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 0.1</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>ppb</td>
<td>1</td>
<td>ND to 10</td>
</tr>
<tr>
<td>Nickel</td>
<td>ppb</td>
<td>0.4</td>
<td>ND to 0.9</td>
</tr>
<tr>
<td>Orthophosphate (as PO₄³⁻)</td>
<td>ppm</td>
<td>2.5</td>
<td>2.0 to 3.4</td>
</tr>
<tr>
<td>Perchlorate</td>
<td>ppb</td>
<td>0.3</td>
<td>ND to 0.4</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>25</td>
<td>15 to 67</td>
</tr>
<tr>
<td>Strontium</td>
<td>ppb</td>
<td>161</td>
<td>97 to 200</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>42</td>
<td>30 to 56</td>
</tr>
<tr>
<td>THAA (HAAS) at Point of Entry³</td>
<td>ppb</td>
<td>32</td>
<td>16 to 45</td>
</tr>
<tr>
<td>Total Ammonia</td>
<td>ppm</td>
<td>0.8</td>
<td>0.05 to 1.0</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>ppm</td>
<td>125</td>
<td>79 to 163</td>
</tr>
<tr>
<td>Total Hardness</td>
<td>grains/gal</td>
<td>7</td>
<td>5 to 10</td>
</tr>
<tr>
<td>TTHM at Point of Entry³</td>
<td>ppb</td>
<td>35</td>
<td>12 to 96</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ppb</td>
<td>ND</td>
<td>ND to 0.9</td>
</tr>
<tr>
<td>Zinc</td>
<td>ppb</td>
<td>1</td>
<td>ND to 10</td>
</tr>
</tbody>
</table>

² - Results represent levels entering DC Water’s distribution system and are distinct from lead and copper compliance monitoring conducted in single-family residential homes. ³ - Monitoring for these parameters is not required at entry points, but is required in the distribution system.
Download helpful water quality tips.

Download our Household Water Quality Guide or call 202-787-2200 to request a mailed copy.

TapIt Metro D.C. is a network of businesses in the metro region that provide free tap water to refill a reusable bottle. Visit freetapwater.org for a list of partners.

Find free tap water on the go!

Visit dcwater.com/customer-assistance. DC Water, in partnership with District Government and Mayor Bowser, has expanded water and sewer bill discounts and relief programs to help non-profits and low-to-moderate income residents.

Want to lower your water bill?

DISTRICT OF COLUMBIA WATER AND SEWER AUTHORITY
1385 CANAL STREET, SE, WASHINGTON, DC 20003 • DCWATER.COM